
TUTORIAL 4

October 10, 2024

1 Convolution (continued)

In last tutorial, we have

Proposition 1.1. Let DFTpfq “ pf̂0, ..., f̂N´1q, we have

DFTpf ˚ gq “ pN ¨ f̂0 ¨ ĝ0, ..., N ¨ f̂N´1 ¨ ĝN´1q

Besides, we have a similar equation for a convolution in the frequency domain.

Proposition 1.2. Suppose F “ DFTpfq, G “ DFTpgq, then

pF ˚ Gq pkq “ yf ¨ gpkq

2 Derivatives

Suppose we have nodes xj (for j “ 0, ..., N) in an interval r0, 2πs, and data tfju from a

real function fpxq and wish to construct a ‘global’ approximation to the derivative f(x) in

the interval (or at least at the nodes). Suppose f is 2π-periodic, from before, we know

pnpxq “
N´1
ř

k“0

f̂pkqeikx is a good interpolant at the nodes txju. Observe that

fpxq « pnpxq “

N´1
ÿ

k“0

f̂pkqeikx ñ f 1pxq « p1
npxq “

N´1
ÿ

k“0

ikf̂pkqeikx

And this process can be summarized in a matrix form.
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`

f 1px0q, ..., f 1pxN´1q
˘T

« D̃ pfpx0q, ..., fpxN´1qq
T

where

D̃ “ F´1DF , D “ diagp0, i, 2i, ..., pN ´ 1qiq

Note that this interpolated derivative doesn’t necessarily equal the true value of f 1pxq

and there is no theoretical guarantee about the error of |p1
npxjq´f 1pxjq|. However, in reality,

we have to solve an ODE Lu “ fpxq with only tfpxjqu available. In such a case, all we can

do is to give estimations of tupxjqu. Instead of using pn and its derivatives to approximate

the differential operator L, we usually try the approach of finite difference scheme. It’s

also a linear interpolation method, which is using linear combinations of upxjq to estimate

Lupxjq. Its benefit is that the approximation error can be of some integer order r by careful

design via Taylor expansion.

For example, assume xk`1 “ xk ` h, when L “ B
Bx ,

u1pxjq “
upxj`1q ´ upxj´1q

2h
` Oph2q

u1pxjq “
3upxjq ´ 4upxj´1q ` upxj´2q

2h
` Oph2qq

u1pxjq “
´upxj`2q ` 8upxj`1q ´ 8upxj´1q ` upxj´2q

12h
` Oph4q

It can also apply to higher derivatives, say, L “ B
2

Bx2

u2pxjq “
upxj`1q ´ 2upxjq ` upxj´1q

h2
` Oph2q

u2pxjq “
2upxjq ´ 5upxj´1q ` 4upxj´2q ´ upxj´3q

h3
` Oph2qq

u2pxjq “
´upxj`2q ` 16upxj`1q ´ 30upxjq ` 16upxj´1q ´ upxj´2q

12h2
` Oph4q

Question 2.1. prove the above six equations.

Using a certain finite difference scheme,

Lu “ f ñ Du⃗ “ f⃗

where u⃗ “ pupx0q, upx1q, ..., upxN´1qq
T

and f⃗ “ pfpx0q, fpx1q, ..., fpxN´1qq
T
. When xj is

near the endpoint of an interval, for example, j “ N ´ 1, estimating LupxN´1q needs

xN , xN`1, ... which is not included in the observations
␣

fxj

(

. Usually, f is assumes to be

periodic, thus xk “ xk`N . As a result, the interpolation matrix D is circulant.
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Definition 2.1. (Circulant Matrix) A circulant matrix is a square matrix in which

all rows are composed of the same elements and each row is rotated one element to

the right relative to the preceding row. A n ˆ n matrix C is of the form

»

—

—

—

—

–

c0 cn´1 ¨ ¨ ¨ c1

c1 c0 ¨ ¨ ¨ c2
...

...
. . .

...

cn´1 cn´2 ¨ ¨ ¨ c0

fi

ffi

ffi

ffi

ffi

fl

But the computation cost of directly solving this linear system is OpN3q. Therefore we

turn to the discrete Fourier transform for efficiency.

3 DFT and differential equation

Let ω “ e`i 2π
N and denote the discrete Fourier transform matrix by Apωq,

Apωq “

»

—

—

—

—

–

ω0˚0 ω0˚1 ¨ ¨ ¨ ω0˚pN´1q

ω1˚0 ω1˚1 ¨ ¨ ¨ ω1˚pN´1q

...
...

. . .
...

ωpN´1q˚0 ωpN´1q˚1 ¨ ¨ ¨ ωpN´1q˚pN´1q

fi

ffi

ffi

ffi

ffi

fl

we have
⃗̂
f “ 1

NA˚pωqf⃗ ,
⃗̂
f is the vector of Fourier coefficients. In addition, f⃗ “ Apωq

⃗̂
f .

Thus,

Du⃗ “ f⃗ ñ DApωq⃗̂u “ Apωq
⃗̂
f ñ

1

N
Apωq˚DApωq⃗̂u “

⃗̂
f

Moreover 1
NA˚pωqDApωq can be simplified to a diagonal matrix. In the following, we let

ωpmq “ pω0ˆm, ω1ˆm, ..., ωpN´1qˆmqT for m “ 0, 1, ..., N ´ 1

3.1 Eigen-decomposition of circulant matrix

Proposition 3.1. Suppose C is a circulant N ˆ N matrix and its first row is

pc0, cN´1, ..., c1qT , then ωpmq is an eigenvector of C corresponding to the eigenvalue

λm “ NDFTpc⃗qpmq, where c⃗ “ pc0, c1, ..., cN´1qT
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So each column of Apωq is an eigenvector of D. What about A˚pωq? note that

A˚pωq “

»

—

—

—

—

–

ω0˚0 ω0˚p´1q ¨ ¨ ¨ ω0˚r´pN´1qs

ω1˚0 ω1˚p´1q ¨ ¨ ¨ ω1˚r´pN´1qs

...
...

. . .
...

ωpN´1q˚0 ωpN´1q˚p´1q ¨ ¨ ¨ ωpN´1q˚r´pN´1qs

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

ω0˚0 ω0˚pN´1q ¨ ¨ ¨ ω0˚1

ω1˚0 ω1˚pN´1q ¨ ¨ ¨ ω1˚1

...
...

. . .
...

ωpN´1q˚0 ωpN´1q˚pN´1q ¨ ¨ ¨ ωpN´1q˚1

fi

ffi

ffi

ffi

ffi

fl

“

¨

˚

˝

»

—

–

| | ¨ ¨ ¨ |

ωp0q ωpN´1q ¨ ¨ ¨ ωp1q

| | ¨ ¨ ¨ |

fi

ffi

fl

˛

‹

‚

In all,

1

N
A˚pωqDApωq⃗̂u “

1

N
A˚pωqApωqdiagpλ0, λ1, λ2, ..., λN´1q⃗̂u

“ diagpλ0, λ1, λ2, ..., λN´1q⃗̂u

“ pλ0 ¨ ûp0q, λ1 ¨ ûp1q, ¨ ¨ ¨ , λN´1 ¨ ûpN ´ 1qqT

“ pf̂p0q, f̂p1q, ¨ ¨ ¨ , f̂pN ´ 1qqT

After obtaining tûpkqu, we can recover tupxju by upxjq “
N´1
ř

k“0

ûpkqeik
2π
N j . This is a general

framework for transforming a circulant linear system in the spatial domain to a diagonal

linear system in the frequency domain. You are not suggested to recite the conclusion above.

Instead, you should try to understand the spirit hidden behind it.

The two essential things of applying this method are

1. our goal is to obtain tûpkqu, and each ûpkq is a constant multiple of f̂pkq, this constant

only depends on the circulant matrix, or equivalently, the finite difference scheme you

design.

2. These constant factors are eigenvalues of the circulant matrix and you can easily

compute the eigenvalues by computing the first row of matrix-vector product.

Before further discussing the potential confusion induced, we would like to illustrate this

process with a concrete example in case some students might find it difficult to put this

abstract process into practice.

Question 3.1. Given a partial differential equation p d2

dx2 ` 2 d
dx qu “ f with obser-

vations fpxjq and xj “
2πj
N , j “ 0, ¨ ¨ ¨ , N ´ 1. Suppose we approximate u2pxjq by

upxj`1q´2upxjq`upxj´1q

h2 and u1pxjq by
upxj`1q´upxj´1q

2h , Could you obtain the solution

u, and is there only one solution? If not, why?

From this example, you should have a taste of solving the ODE using a finite difference
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scheme. The idea is that

¨

˚

˚

˚

˚

˝

upx0q

upx1q

...

upxN´1q

˛

‹

‹

‹

‹

‚

“ ûp0q ¨

¨

˚

˚

˚

˚

˝

ω0ˆ0

ω0ˆ1

...

ω0ˆpN´1q

˛

‹

‹

‹

‹

‚

` ûp1q ¨

¨

˚

˚

˚

˚

˝

ω1ˆ0

ω1ˆ1

...

ω1ˆpN´1q

˛

‹

‹

‹

‹

‚

` ¨ ¨ ¨ ` ûpN ´ 1q ¨

¨

˚

˚

˚

˚

˝

ωN´1ˆ0

ωpN´1qˆ1

...

ωpN´1qˆpN´1q

˛

‹

‹

‹

‹

‚

“ ûp0q ¨ ωp0q ` ûp1q ¨ ωp1q ` ¨ ¨ ¨ ` ûpN ´ 1q ¨ ωpN´1q

And

D

¨

˚

˚

˚

˚

˝

upx0q

upx1q

...

upxN´1q

˛

‹

‹

‹

‹

‚

“ ûp0q ¨ Dωp0q ` ûp1q ¨ Dωp1q ` ¨ ¨ ¨ ` ûpN ´ 1q ¨ DωpN´1q

“ ûp0q ¨ d0 ¨ ωp0q ` ûp1q ¨ d1 ¨ ωp1q ` ¨ ¨ ¨ ` ûpN ´ 1q ¨ dN´1 ¨ ωpN´1q

So if the eigenvalue dj of D is nonzero, ûpjq “
f̂pjq

dj
. However, what if some of the dj are

zero? and Why some of the dj are zero? We will discuss it in the tutorial.
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