TUTORIAL 4

October 10, 2024

1 Convolution (continued)

In last tutorial, we have

Proposition 1.1. Let DFT(f) = (fo, ..., fy—1), we have

DFT(f*g) = (N - fo- oy s N - fn—1-Gn-1)

Besides, we have a similar equation for a convolution in the frequency domain.

Proposition 1.2. Suppose F' = DFT(f),G = DFT(g), then

(F+G) (k) = [f-g(k)

2 Derivatives

Suppose we have nodes z; (for j = 0,...,N) in an interval [0,27], and data {f;} from a
real function f(z) and wish to construct a ‘global’ approximation to the derivative f(x) in

the interval (or at least at the nodes). Suppose f is 27m-periodic, from before, we know

N-1
pu(x) = > f(k)e™® is a good interpolant at the nodes {z;}. Observe that
k=0

N— N—
f( Z zkz /( pn Z zkz

And this process can be summarized in a matrix form.



(f'(@0),woos S (@n-1))" ~ D (f(20), e, flan-1))"
where

D = F'DF,D = diag(0,i,2i, ..., (N — 1)i)

Note that this interpolated derivative doesn’t necessarily equal the true value of f’(x)
and there is no theoretical guarantee about the error of |p/, (x;)— f'(x;)|. However, in reality,
we have to solve an ODE Lu = f(x) with only {f(z;)} available. In such a case, all we can
do is to give estimations of {u(x;)}. Instead of using p,, and its derivatives to approximate
the differential operator £, we usually try the approach of finite difference scheme. It’s
also a linear interpolation method, which is using linear combinations of u(x;) to estimate
Lu(z;). Its benefit is that the approximation error can be of some integer order r by careful
design via Taylor expansion.

For example, assume 1 = x + h, when £ = %,
u(@j+1) —ul@j—1

J )2h ( J ) 4 O(h2)
Su(x;) — du(zj1) +u@j—2) O(?))

2h
—u(zjy2) + 8u(xjp1) — 8u(z;—1) + u(z;—2)
12h

u'(x;) =

u'(z5) =

u'(z) = +0(hY)

It can also apply to higher derivatives, say, £ = %

u(rj1) — 2u(z)) + ul@j—1)

2 + O(h?)

2u(z;) — Su(z;j-1) Z;M(xj_Q) — uly=s) +O0(h?))

() — —u(zj42) + 16u(zj41) — 310;h(2$j) t+ 16u(@;j—1) —ul@j-2) o)

u(z;) =

u"(x;) =

[ Question 2.1. prove the above six equations. ]

Using a certain finite difference scheme,
Lu=f=Di=f

where @ = (u(zo),u(z1), ..., ulen_1))" and f = (f(x0), f(x1), .., f(xn_1))". When z; is
near the endpoint of an interval, for example, j = N — 1, estimating Lu(xy_1) needs
TN,TN+1,--- Which is not included in the observations { fzj}. Usually, f is assumes to be

periodic, thus z = zpn. As a result, the interpolation matrix D is circulant.



Definition 2.1. (Circulant Matrix) A circulant matrix is a square matrix in which
all rows are composed of the same elements and each row is rotated one element to

the right relative to the preceding row. A n x n matrix C is of the form

€o Cn—1 C1
C1 Co C2
Cp—1 Cp—2 Co

But the computation cost of directly solving this linear system is O(N?3). Therefore we

turn to the discrete Fourier transform for efficiency.

3 DFT and differential equation

Let w = ¢ and denote the discrete Fourier transform matrix by Aw),

0%0 W01 wO*(Nfl)
wl*0 wlxl wl*(Nfl)
Aw) =
wN=Dx0  (N-DLx1 . (N-1)x(N-1)

we have f = %A*(w)f, f is the vector of Fourier coefficients. In addition, f = A(w)f.

Thus,

—

Dii = [ = DAW)i = Aw)f = %A(M)*DA(W)EL —j

Moreover + A*(w)DA(w) can be simplified to a diagonal matrix. In the following, we let
wm) = (WOxm txm W =1xm)T for m = 0,1,..., N — 1

3.1 Eigen-decomposition of circulant matrix

Proposition 3.1. Suppose C is a circulant N x N matrix and its first row is

(co,eN—1,yc1)T, then w(™ is an eigenvector of C corresponding to the eigenvalue
Am = NDFT(G)(m), where ¢ = (co,c1,...,en—1)7




So each column of A(w) is an eigenvector of D. What about A*(w)? note that

i (0%0 Ww0x(=1) WOF[—(N-1)]
wi*0 wix(=1) wix[—(N=1)]
AF(w) =
wN=1D%0  (N—1)%(-1) wN=1D)x[—(N-1)]
B w00 wO*(Nfl) wo*!1
w1#0 wl*(Nfl) wlxl
w(N;l)*O w(Nfl).*(Nfl) w(Nil)*l
= UJ(O) w(N_l) PPN w(l)

In all,

%A* (@) DA(w)i — %A*(W)A(w)diag()\o, Mo Aoy Ay )i

= diag()\o,)\l, )\2, ...,)\Nfl)ﬁ
= No-a(0), A -a(l),---, An_p-a(N-—1)T
= (f(0), f(1), -+, (N —=1))"

After obtaining {@(k)}, we can recover {u(x;} by u(z;) = 3. a(k)e?* 7. This is a general
k=0
framework for transforming a circulant linear system in the spatial domain to a diagonal

linear system in the frequency domain. You are not suggested to recite the conclusion above.
Instead, you should try to understand the spirit hidden behind it.
The two essential things of applying this method are

1. our goal is to obtain {a(k)}, and each @ (k) is a constant multiple of f(k), this constant
only depends on the circulant matrix, or equivalently, the finite difference scheme you

design.

2. These constant factors are eigenvalues of the circulant matrix and you can easily

compute the eigenvalues by computing the first row of matrix-vector product.

Before further discussing the potential confusion induced, we would like to illustrate this
process with a concrete example in case some students might find it difficult to put this

abstract process into practice.

Question 3.1. Given a partial differential equation (% + 2%)u = f with obser-

vations f(z;) and z; = %,]’ =0,---,N — 1. Suppose we approximate u”’(z;) by

“(zj“)d"éﬁj)Jr“(zj‘l) and u'(z;) by %h“(zj‘l), Could you obtain the solution

u, and is there only one solution? If not, why?

From this example, you should have a taste of solving the ODE using a finite difference



scheme. The idea is that

u(xg) 0X0 W1X0 WwN=1x0
u(zy) Wwox1 wlxl Ww(N=1)x1
i = 4(0) - . +a(1) - . +-- 4+ a(N—-1)-
U(.’IZ‘N_l) WOX(N_U le(N—l) W(N—I)X(N—l)

= 4(0) cw@ 4 (1) oM a(N —1) LoD

And

T
[

@(0) - Dw® +a(1) - Dw™ + -+ 4(N —1) - Dw™

@(0) - do .w0© + (1) - dy w4 o U(N=1)-dy_y V-1

f)

So if the eigenvalue d; of D is nonzero, 4(j) = . However, what if some of the d; are

zero? and Why some of the d; are zero? We will discuss it in the tutorial.
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